XL ReuniónSynthesis and Biological Properties of Palladium(II) Cyclometallated compoundsdel GEQOderived from (E)-2-((4-hydroxybenzylidene)amino)phenolBarcelona 2022

Joan Albert,^a Basma Al Janabi,^a Jaume Granell,^a Mojdeh Sadat Hashemi,^a Daniel Sainz,^a M. Kaleem Khosa,^b Laura Baldomà,^c Josefa Badia,^c Carme Calvis,^d Ramon Messeguer,^d Mercè Font-Bardia^e

^aDepartament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain. ^bDepartment of Chemistry, Sir Syed Block, New Campus, Government College University, Jhang Road, Faisalabad, Pakistan. ^cDepartament de Bioquímica i Fisiologia, Facultat de Farmàcia, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain. ^dBiomed Division LEITAT Technological Center, Parc Científic, Edifici Hèlix, Baldiri Reixach 15-21, 08028 Barcelona, Spain. ^eUnitat de Difracció de RX, Centre Científic i Tecnològic de la Universitat de Barcelona, Solé i Sabarís 1-3, 08028 Barcelona, Spain.

Palladium(II) compounds, containing chelating and good σ -donor or π -acceptor ligands and with steric hindrance around the palladium(II) centres, usually present good profiles as anticancer, antimicrobial and antiparasitic drugs [1, 2].

Therefore, compounds a were prepared by an adaptation of known procedures (Scheme 1) [3] and characterized by the usual techniques in the field, including the determination of the molecular structure of 2a and 3a by single crystal X-ray diffraction analysis (Figure 1). Furthermore, their cytotoxicity, antibacterial and antioxidant activities, and their ability to modify the electrophoretic mobility of the pBluescript SK+ plasmid DNA in agarose gel and to inhibit topoisomerases I and II α were studied.

Most of compounds **a** were non-cytotoxic or poorly cytotoxic against the MDA-MB-231 and MCF-7 breast and HCT-117 colon human cancer cell lines. Nonetheless, **2a** was moderately cytotoxic against the MCF-7 breast ($IC_{50} = 7.8 \pm 1.7 \mu$ M) and HCT-116 colon ($IC_{50} = 31 \pm 5 \mu$ M) human cancer cell lines and presented a very low cytotoxicity towards normal human BJ cells ($IC_{50} = 86 \pm$ nd μ M) (**Table 1**).

Compounds a showed moderate antibacterial activity against some Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli) bacterial strains (Table 2), and moderate antioxidant

Scheme 1: i) EtOH, reflux, 4 h; ii) $Pd(OAc)_2$, acetic acid, 24 h, 60 °C; iii) PPh_3 , acetone, 1 h, rt; iv) $PPh_2CH_2CH_2PPh_2$, acetone, 2 h, rt.

Figure 1: X-ray crystal molecular structure of 2a (left) and 3a (rigth)Trial MDA-MB-231 MCF-7HCT-116BJ

activity in the DPPH free radical scavenging assay, having **3a** the best antioxidant activity of the series ($IC_{50} = 0.08 \text{ mM}$) in relation to ascorbic acid ($IC_{50} = 0.05 \text{ mM}$) (**Table 3**).

1a was the unique compound of the series that produced a change on the electrophoretic mobility of the pBluescript SK+ plasmid DNA in the agarose gel. This change followed the pattern of *cisplatin*, but started to take place at a concentration twenty times higher than with *cisplatin*. (Figure 2). In addition, compounds **a** were unable to inhibit topoisomerase I at a concentration of 100 μ M, but **1a** – **3a** inhibited topoisomerase II α at concentrations of 10, 50 and 25 μ M (Figure 3), respectively.

[1] Scattolin, T.; Voloshkin, V. A.; Visentin, F.; Nolan, S. P. *Cell Reports Physical Science* **2021**, *2(6)*, 100446.

[2] Garoufis, A.; Hadjikakou, S. K.; Hadjiliadis, N. *Coord. Chem. Rev.* **2009**, *253*, 1384 – 1397.

[3] Fernández, A.; Vázquez-García, D.; Fernández, J. J.; López-Torres, M.; Suárez, A.; Castro-Juiz, S.; Vila, J. M. *New. J. Chem.* **2002**, *26*, 398 – 404.

•	10	22	20	aicalatia	ED

a	1	> 100	64 ± nd	> 100	> 100
1a	1	> 100	> 100	> 100	> 100
2 a	1	29 ± nd	7.8 ± 1.7	<mark>31 ± 5</mark>	<mark>86 ± nd</mark>
cisplatin	1	4.4 ± 0.5	<mark>3.6 ± 1.7</mark>	<mark>19 ± 2</mark>	<mark>3 ± nd</mark>
3 a	2	> 100	> 100	22 ± 5	15 ± 6
cisplatin	2	13 ± 3	13 ± 2	3.6 ± 0.5	5.3 ± 0.7

Table 1: Cell viability $[IC_{50} (\mu M)]$.

a

1a

2a

	B. subtilis ^a	S. aureus ^a	S. pyogenes ^a	E. coli ^b	P. aeruginosa ^b	S. typhi ^b
a	<mark>24 ± 1.5</mark>	<mark>26 ± 0.5</mark>	-	<mark>22 ± 0.5</mark>	-	20 ± 1
1 a	<mark>22 ± 1</mark>	<mark>18 ± 1</mark>	-	<mark>19 ± 1</mark>	-	18 ± 1
2 a	<mark>18 ± 0.5</mark>	<mark>20 ± 0.5</mark>	-	<mark>21 ± 1.5</mark>	-	-
3 a	<mark>20 ± 0.5</mark>	<mark>16 ± 1.5</mark>	-	16 ± 1.25	-	-
cefixime	<mark>33 ± 1.5</mark>	<mark>31 ± 1</mark>	35 ± 1.5	<mark>29 ± 0.5</mark>	36 ± 1.25	31 ± 2

Table 2: Antibacterial activity [inhibition zone (mm). 5 - 10 = weak. 11 - 25 = moderate. 26 - 40 strong]. ^aGram-positive. ^bGram-negative.

200 ^a	100 ^a	40 ^a	20 ^a	10 ^a	5 ^a	IC ₅₀ ^a	IC ₅₀ ^b
79 ± 1	67 ± 1	58 ± 1	39 ± 2	25 ± 1	16 ± 1	32 ± 1	0.15
73 ± 1	60 ± 1	48 ± 1	36 ± 1	23 ±1	10 ± 1	50 ± 1	0.16
66 ± 1	52 ± 2	41 ± 2	30 ± 2	20 ± 1	05 ± 1	87 ± 1	0.15
81 + 1	73 + 2	64 + 1	50 + 1	33 + 1	20 + 1	82 + 1	0.08

Figure 2: Electrophoretic mobility of pBluescript SK+ plasmid DNA. **1**: DNA (0.8 µg). **4**: 1 + 2.5 µM tested compound. **5**: 1 + 5 µM tested compound. **6**: 1 + 10 µM tested compound. **7**: 1 + 25 µM tested compound. **8**: 1 + 50 µM tested compound. **9**: 1 + 100 µM tested compound. **10**: 1 + 200 µM tested compound. sc = supercoiled closed circular DNA; oc = open circular DNA.

Acknowledgements: The authors are grateful to CCiTUB for the facilities given for the structural characterization of compounds **a**.

Figure 3: Topoisomerase II α inhibition. **D**: supercoiled pBluescript DNA (0.3 µg). **T**: D + Topoisomerase II α (4 units). **1**: T + 5 µM tested compound. **2**: T + 10 µM tested compound. **3**: T + 25 µM tested compound. **4**: T + 50 µM tested compound. **5**: T + 100 µM tested compound.